
Dynamics and Kinetics. Exercises 7: Solutions 
 
Problem 1 

1. The most probable velocity v∗ corresponds to the velocity in which fMB (v) dv is maximum: 

 

 

2. Definition of root mean square velocity: 

 
 

Instead of substitute and solve, use some tricks 

 
 

 
 

Trick 1:  

Trick 2: v2 f (v) ∝ v4e−av2 [resembling I(4)] and f(v) ∝ v2e−av2 [resembling I(2)] 

Trick 3: Make                   and use definition of I (n) in terms of gamma functions 

 

Problem 2 

Main idea: probabilities should be conserved, i.e., f (ε )dε = f (v) dv  
Change of variables: 

 

 
 



Problem 3 

The figure below illustrates an experiment for measuring the Maxwell-Boltzmann distribution. 
 
 

 
 
 
An oven at temperature 𝑇 releases a narrow beam of gas molecules of mass 𝑚 through a hole. The 
molecules strike a drum of radius 𝑅 that rotates with frequency 𝜈. The drum has a small opening 
through which gas molecules can enter into the drum when the opening passes through the beam of gas 
molecules. Because of the fast rotation of the drum, only a short pulse of gas molecules enters. Once 
these molecules reach the opposite wall of the drum, they stick to it. 
 
a) Show that the flux of molecules of velocity 𝑢 contained in a pulse that enters the drum is proportional 
to 
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The flux of molecules of velocity 𝑢 from the oven is proportional to 𝑢. In other words, the faster a 
molecule moves, the larger the number of molecules of that specific velocity that are contained in one 
pulse.  
 
Moreover, the number of molecules of velocity 𝑢 is proportional to the Maxwell-Boltzmann distribution 
and therefore to  
 

𝑢%𝑒"
#$!
%&"'𝑑𝑢 

 
The flux is proportional to the product of both 
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b) The molecules are deposited on the wall of the drum at a distance 𝑠 from the point opposite the 
opening in the drum as indicated in the figure. Derive the distribution 𝐼(𝑠)𝑑𝑠 of the deposited 
molecules. It is not necessary to normalize this distribution. 
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Molecules of velocity 𝑢 will take a time %(
$

 to traverse the drum. In this time, the drum will have rotated 
by a distance 
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With 
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we find 
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Problem 4 

 
Derive the speed distribution 𝐹(𝑢)𝑑𝑢 of a two-dimensional ideal gas. 
 
Hint: Start from a one-dimensional velocity distribution to derive a two-dimensional distribution of the 
velocities, and then do a suitable coordinate transformation. 
 
We begin with the one-dimensional distribution of the velocity 
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which gives us the two-dimensional velocity distribution 
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We do a coordinate transformation with 
 

𝑢% = 𝑢2% + 𝑢3%  
𝑢2 = 𝑢 cos𝜙 
𝑢3 = 𝑢 sin𝜙 

𝑑𝑢2𝑑𝑢3 = 𝑢𝑑𝑢𝑑𝜙 
 
 
 
 
 



and obtain 
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which after integration over all angles becomes 
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