Dynamics and Kinetics. Exercises 7: Solutions

Problem 1

1. The most probable velocity v* corresponds to the velocity in which fus (v) dv 1s maximum:
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2. Definition of root mean square velocity:
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Instead of substitute and solve, use some tricks
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Trick 1: [5° f(v)dv =1
Trick 2: v2f (v) X v*e~@2 [resembling /(4)] and f{v) X v2¢~«2 [resembling /(2)]

Trick 3: Make a = ﬁ and use definition of / () in terms of gamma functions

Problem 2
Main idea: probabilities should be conserved, i.e., f (¢ )de = f (v) dv

Change of variables:
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Problem 3

The figure below illustrates an experiment for measuring the Maxwell-Boltzmann distribution.
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An oven at temperature T releases a narrow beam of gas molecules of mass m through a hole. The
molecules strike a drum of radius R that rotates with frequency v. The drum has a small opening
through which gas molecules can enter into the drum when the opening passes through the beam of gas
molecules. Because of the fast rotation of the drum, only a short pulse of gas molecules enters. Once
these molecules reach the opposite wall of the drum, they stick to it.

a) Show that the flux of molecules of velocity u contained in a pulse that enters the drum is proportional
to
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The flux of molecules of velocity u from the oven is proportional to u. In other words, the faster a
molecule moves, the larger the number of molecules of that specific velocity that are contained in one
pulse.

Moreover, the number of molecules of velocity u is proportional to the Maxwell-Boltzmann distribution
and therefore to
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The flux is proportional to the product of both
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b) The molecules are deposited on the wall of the drum at a distance s from the point opposite the
opening in the drum as indicated in the figure. Derive the distribution I(s)ds of the deposited
molecules. It is not necessary to normalize this distribution.
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Molecules of velocity u will take a time ~ (o traverse the drum. In this time, the drum will have rotated

by a distance
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Problem 4

Derive the speed distribution F (u)du of a two-dimensional ideal gas.

Hint: Start from a one-dimensional velocity distribution to derive a two-dimensional distribution of the
velocities, and then do a suitable coordinate transformation.

We begin with the one-dimensional distribution of the velocity
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which gives us the two-dimensional velocity distribution
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We do a coordinate transformation with

u? =uf +uj
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and obtain
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which after integration over all angles becomes
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